Title
Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles
Abbreviated Journal Title
Mol. Biosyst.
Keywords
CARBON NANOTUBES; BIOMEDICAL APPLICATIONS; OXIDATIVE STRESS; MAMMALIAN-CELLS; CELLULAR UPTAKE; NANOCERIA; DRUG; DELIVERY; VACANCY; INTERNALIZATION; Biochemistry & Molecular Biology
Abstract
Cerium oxide nanoparticles (CNPs) have been recently studied for their potent superoxide scavenging properties in both cell and animal model systems. Data from these model systems have shown that exposure of cells to CNPs results in the protection against reactive oxygen species (ROS). Despite these exciting findings, very little is known regarding the uptake or subcellular distribution of these nanomaterials inside cells. In this study we utilized fluorophore (carboxyfluorescein) conjugated cerium oxide NPs (CCNPs) to study the mechanism of uptake and to elucidate the subcellular localization of CNPs using a keratinocyte model system. We observed rapid uptake (within 3 h) of CCNPs that was governed by energy-dependent, clathrin-mediated and caveolae-mediated endocytic pathways. We found CCNPs co-localized with mitochondria, lysosomes and endoplasmic reticulum as well as being abundant in the cytoplasm and the nucleus. Given the radical scavenging properties of cerium oxide and the widespread cellular disposition we observed, CNPs likely act as cellular antioxidants in multiple compartments of the cell imparting protection against a variety of oxidant injuries.
Journal Title
Molecular Biosystems
Volume
6
Issue/Number
10
Publication Date
1-1-2010
Document Type
Article
DOI Link
Language
English
First Page
1813
Last Page
1820
WOS Identifier
ISSN
1742-206X
Recommended Citation
"Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles" (2010). Faculty Bibliography 2010s. 798.
https://stars.library.ucf.edu/facultybib2010/798
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu