Title

Genetic Programming to Investigate Design Parameters Contributing to Crash Occurrence on Urban Arterials

Authors

Authors

A. Das; M. Abdel-Aty;A. Pande

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Transp. Res. Record

Keywords

MOTOR-VEHICLE CRASHES; ALGORITHM APPROACH; MODELS; Engineering, Civil; Transportation; Transportation Science & Technology

Abstract

Nonlinear models were developed to estimate crash frequency on urban arterials with partial access control These multilane arterials consist of midblock segments joined by signalized and unsignalized intersections (or access points) Crashes included in the analysis are of three major types rear-end, angle, and head on Each crash type is further sorted Into mutually exclusive categories on the basis of the roadway element responsible for the crashes midblock segment, signalized intersection, and access point. Genetic programming (GP) is adopted for predicting crash frequency GP, which is primarily based on genetic algorithms, uses the concept of evolution to develop models through the processes of crossover and mutation The GP modeling approach gives Independence for model development without restrictions on distribution of data The models developed were compared to the basic negative binomial models Morning and afternoon peak periods are observed to have fewer occurrences of rear-end crashes at all roadway elements Higher traffic volume results m an increased number of angle crashes Instances of angle crashes have increased at signalized intersections, even at lower maximum posted speeds A higher average truck factor increases the instances of head on crashes on midblock segments and at signalized intersections.

Journal Title

Transportation Research Record

Issue/Number

2147

Publication Date

1-1-2010

Document Type

Article

Language

English

First Page

25

Last Page

32

WOS Identifier

WOS:000284180600004

ISSN

0361-1981

Share

COinS