Title
Genetic Programming to Investigate Design Parameters Contributing to Crash Occurrence on Urban Arterials
Abbreviated Journal Title
Transp. Res. Record
Keywords
MOTOR-VEHICLE CRASHES; ALGORITHM APPROACH; MODELS; Engineering, Civil; Transportation; Transportation Science & Technology
Abstract
Nonlinear models were developed to estimate crash frequency on urban arterials with partial access control These multilane arterials consist of midblock segments joined by signalized and unsignalized intersections (or access points) Crashes included in the analysis are of three major types rear-end, angle, and head on Each crash type is further sorted Into mutually exclusive categories on the basis of the roadway element responsible for the crashes midblock segment, signalized intersection, and access point. Genetic programming (GP) is adopted for predicting crash frequency GP, which is primarily based on genetic algorithms, uses the concept of evolution to develop models through the processes of crossover and mutation The GP modeling approach gives Independence for model development without restrictions on distribution of data The models developed were compared to the basic negative binomial models Morning and afternoon peak periods are observed to have fewer occurrences of rear-end crashes at all roadway elements Higher traffic volume results m an increased number of angle crashes Instances of angle crashes have increased at signalized intersections, even at lower maximum posted speeds A higher average truck factor increases the instances of head on crashes on midblock segments and at signalized intersections.
Journal Title
Transportation Research Record
Issue/Number
2147
Publication Date
1-1-2010
Document Type
Article
DOI Link
Language
English
First Page
25
Last Page
32
WOS Identifier
ISSN
0361-1981
Recommended Citation
"Genetic Programming to Investigate Design Parameters Contributing to Crash Occurrence on Urban Arterials" (2010). Faculty Bibliography 2010s. 81.
https://stars.library.ucf.edu/facultybib2010/81
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu