Title
Exponential-type solutions to a generalized Drinfel'd-Sokolov equation
Abbreviated Journal Title
Phys. Scr.
Keywords
HOMOTOPY ANALYSIS METHOD; NONLINEAR DIFFERENTIAL-EQUATIONS; TANH METHOD; W-ALGEBRAS; PERIODIC-SOLUTIONS; WILSON EQUATION; WAVE-EQUATIONS; REDUCTION; OPERATORS; KDV; Physics, Multidisciplinary
Abstract
Exact exponential-type solutions to the generalized Drinfel'd-Sokolov (GDS) equations u(t) + alpha(1)uu(x) + beta(1)u(xxx) + gamma (v(delta))(x) = 0 and v(t) + alpha(2)uv(x) + beta(2)v(xxx) = 0 are obtained for the case in which alpha(2) = 0, for various values of the other model parameters. A modification of the homotopy analysis method is then applied to obtain analytical solutions for nonzero values of the parameter alpha(2), in effect extending the exact solutions. In our modification of the standard method, we employ a nonlinear auxiliary operator. In contrast to most standard perturbation methods, in which a nonlinear problem is reduced to 'infinitely many' linear problems, here we reduce a hard nonlinear problem to 'infinitely many' easier nonlinear problems. Indeed, we also provide a solution using a linear auxiliary operator and show that the convergence of obtained solutions is improved (in the sense that fewer terms are required for the approximate solutions to obtain a desired accuracy) when using the auxiliary nonlinear operator, in some cases. An error analysis of the obtained approximate analytical solutions is provided.
Journal Title
Physica Scripta
Volume
82
Issue/Number
3
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
11
WOS Identifier
ISSN
0031-8949
Recommended Citation
"Exponential-type solutions to a generalized Drinfel'd-Sokolov equation" (2010). Faculty Bibliography 2010s. 851.
https://stars.library.ucf.edu/facultybib2010/851
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu