Title

Enhancement of Inertial Electrostatic Confinement (IEC) Fusion Through High Frequency Electromagnetic Fields

Abstract

While the search for a practical fusion energy source has been pursued for decades, ultimate success remains elusive, and the need is apparent for continued research into alternative experimental fusion techniques. A method that has received fair attention over the past few years is Inertial Electrostatic Confinement (IEC) fusion, a system in which a convergent ion focus is obtained solely through electrostatic fields. During device operation where the electrostatic field is supported by very high voltages (over 20,000V), the resulting ion focus sustains a dense plasma capable of generating a high rate of fusion reactions and neutron production. However, present limited theoretical knowledge and engineering issues prevent the capacity ofIEC systems to produce net power. Rather, intermediate applications center on using the device as a portable neutron source.

The work performed here involves an IEC device using spherical geometry, and includes the introduction of a new variable, the addition of high frequency electromagnetic (EM) fields into its operation. The goal is to predict theoretically, observe and explain any beneficial compressive effects of added microwave EM fields on the potential fusion reaction rate in an experimental reactor. An optical determination of the enhancement is performed while using lower voltages under 1 000V, and is based on the relative intensity of the confined plasma during glow discharge operation. It is hypothesized that imposing EM fields will enhance the potential fusion reaction rate conservatively by a factor of two. Presently, IEC systems operate just under neutron production levels needed for practical applications such as landmine detection and medical isotope production, and any enhancement from EM fields should prove highly beneficial.

Notes

This item is only available in print in the UCF Libraries. If this is your thesis or dissertation, you can help us make it available online for use by researchers around the world by downloading and filling out the Internet Distribution Consent Agreement. You may also contact the project coordinator Kerri Bottorff for more information.

Thesis Completion

2004

Semester

Spring

Advisor

Johnson, Roger

Degree

Bachelor of Science (B.S.)

College

College of Engineering and Computer Science

Degree Program

Mechanical Engineering

Subjects

Dissertations, Academic -- Engineering; Engineering -- Dissertations, Academic

Format

Print

Identifier

DP0021854

Language

English

Access Status

Open Access

Length of Campus-only Access

None

Document Type

Honors in the Major Thesis

This document is currently not available here.

Share

COinS