Contributors

Zhishan Guo

Keywords

Machine Learning, Real-Time Scheduling

Description

A collection of various research methods and concepts into Real-Time Scheduling issues being solved using Machine Learning and Neural Networks.

Abstract

This paper aims to serve as an efficient survey of the processes, problems, and methodologies surrounding the use of Neural Networks, specifically Hopfield-Type, in order to solve Hard-Real-Time Scheduling problems. Our primary goal is to demystify the field of Neural Networks research and properly describe the methods in which Real-Time scheduling problems may be approached when using neural networks. Furthermore, to give an introduction of sorts on this niche topic in a niche field. This survey is derived from four main papers, namely: “A Neurodynamic Approach for Real-Time Scheduling via Maximizing Piecewise Linear Utility” and “Scheduling Multiprocessor Job with Resource and Timing Constraints Using Neural Networks” . “Solving Real Time Scheduling Problems with Hopfield-type Neural Networks” and “Neural Networks for Multiprocessor Real-Time Scheduling”

Date Created

2019

Type

article

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.