Groundwater, Groundwater flow, Seepage, Storm water retention basins


The objective of this study is to develop guidelines for the analysis of storm water retention ponds in Central Florida. Development of a combined seepage analysis considering both unsaturated and saturated groundwater flow incorporation into a systematic approach for storm water retention pond design will result in safer and more economical storm water management practices. The research was conducted in four phases: 1) A literature review. 2) A review of mathematical and empirical analysis of transient – unsaturated/saturated groundwater flow. 3) Construction and testing of a downscaled storm water pond model. 4) Incorporation of full scale percolation pond test data from ponds constructed and tested in Central Florida. The literature review was undertaken to research mathematical and empirical equations for both unsaturated and saturated groundwater seepage to be incorporated into the modelling and development of final system analysis. The review was concentrated on seepage studies conducted in subsoil conditions similar to those in Central Florida. It was found in the early review of literature that separate studies and modelling for unsaturated and saturated seepage are widespread and relatively well documented. However, documentation of combined groundwater seepage model, since the majority of storm water retention ponds in Central Florida experience both seepage condition (unsaturated/saturated) during the design storm event. Inspection of operational seepage ponds and interviews with regulatory agencies and consulting firms in Central Florida indicated that successful design of storm water retention ponds greatly depends on the accurate definition of the subsoil conditions and the seepage characteristics during a specific design storm event. Interviews with those responsible for pond design revealed that there is currently no widespread accepted design method, and most of the designs are based on mostly local experience. Also, history indicates that even though the unsteady seepage analysis is a complex phenomenon, there is usually very little money I the budget for its analysis and design. However, due to continuous increase of property values and the need to optimize pond sizing, the trend of under budgeting for seepage bond design is reversing. Application of the research results will yield a more accurate analysis which accounts for unsaturated and saturated seepage for sizing of storm water retention ponds in Central Florida. The analytical solutions developed from this research are a combination of acceptable mathematical and empirical groundwater seepage equations or dimensionless graphs modified for the purpose of storm water retention pond analysis.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date





Dietz, John D.


Master of Science (M.S.)


College of Engineering








Public Domain

Length of Campus-only Access


Access Status

Masters Thesis (Open Access)



Accessibility Status

Searchable text

Included in

Engineering Commons