Title
Adaptive, Frequency Domain, 2-D Modeling Using Spatiotemporal Signals
Abstract
In this paper, an adaptive, frequency domain, steepest descent algorithm for two-dimensional (2-D) system modeling is presented. Based on the equation error model, the algorithm, which characterizes the 2-D spatially linear and invariant unknown system by a 2-D auto-regressive, moving-average (ARMA) process, is derived and implemented in the 3-D spatiotemporal domain. At each iteration, corresponding to a given pair of input and output 2-D signals, the algorithm is formulated to minimize the error-function's energy in the frequency domain by adjusting the 2-D ARMA model parameters. A signal dependent, optimal convergence factor, referred to as the homogeneous convergence factor, is developed. It is the same for all the coefficients but is updated once per iteration. The resulting algorithm is called the Two-Dimensional, Frequency Domain, with Homogeneous μ*, Adaptive Algorithm (2D-FD-HAA). In addition, the algorithm is implemented using the 2-D Fast Fourier Transform (FFT) to enhance the computational efficiency. Computer simulations demonstrate the algorithm's excellent adaptation accuracy and convergence speed. For illustration, the proposed algorithm is successfully applied to modeling a time varying 2-D system.
Publication Date
1-1-1996
Publication Title
Journal of Circuits, Systems and Computers
Volume
6
Issue
4
Number of Pages
351-358
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1142/S0218126696000236
Copyright Status
Unknown
Socpus ID
3042995620 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/3042995620
STARS Citation
Mikhael, Wasfy B. and Yu, Haoping, "Adaptive, Frequency Domain, 2-D Modeling Using Spatiotemporal Signals" (1996). Scopus Export 1990s. 2215.
https://stars.library.ucf.edu/scopus1990/2215