Title
Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer
Abstract
We report the realization of ultrafast all-optical switching in an integrated strip-loaded waveguide Mach-Zehnder interferometer. The device was fabricated from a GaAs/AlGaAs multi-quantum-well structure grown by molecular-beam epitaxy upon a GaAs substrate. Although the slow-recovery carrier-induced nonlinearity is utilized to cause the switching, ON-OFF switching within a time window of ∼10 ps has been realized in our experiment. Two control pulses, each with an energy of ∼11 pJ, were used to modulate the nonlinear refractive index. The first pulse switches the state at the output of the interferometer by creating a local population of free carriers asymmetrically across the device. The second control pulse balances the effect of the first one by creating an equal density of carriers as produced by the first one with a mirror image spatial distribution. In this configuration the finite lifetime of the carriers does not limit the speed of the device. However, the device can be used only in systems in which repetitive bursts of fast switching are followed by long enough latent periods to allow for the relaxation of the carriers. © 1997 Optical Society of America.
Publication Date
1-1-1997
Publication Title
Journal of the Optical Society of America B: Optical Physics
Volume
14
Issue
11
Number of Pages
3217-3223
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1364/JOSAB.14.003217
Copyright Status
Unknown
Socpus ID
0031476932 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0031476932
STARS Citation
Kan'an, Ayman M. and Likamwa, Patrick, "Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer" (1997). Scopus Export 1990s. 2744.
https://stars.library.ucf.edu/scopus1990/2744