Title

Finite element method for thermomechanical response of near-incompressible elastomers

Abstract

The present study addresses finite element analysis of the coupled thermomechanical response of near-incompressible elastomers such as natural rubber. Of interest are applications such as seals, which often involve large deformations, nonlinear material behavior, confinement, and thermal gradients. Most published finite element analyses of elastomeric components have been limited to isothermal conditions. A basic quantity appearing in the finite element equation for elastomers is the tangent stiffness matrix. A compact expression for the isothermal tangent stiffness matrix has recently been reported by the first author, including compressible, incompressible, and near-incompressible elastomers. In the present study a compact expression is reported for the tangent stiffness matrix under coupled thermal and mechanical behavior, including pressure interpolation to accommodate near-incompressibility. The matrix is seen to have a computationally convenient structure and to serve as a Jacobian matrix in a Newton iteration scheme. The formulation makes use of a thermoelastic constitutive model recently introduced by the authors for near-incompressible elastomers. The resulting relations are illustrated using a near-incompressible thermohyperelastic counterpart of the conventional Mooney-Rivlin model. As an application, an element is formulated to model the response of a rubber rod subjected to force and heat.

Publication Date

1-1-1997

Publication Title

Acta Mechanica

Volume

124

Issue

1-4

Number of Pages

181-198

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1007/BF01213024

Socpus ID

0031356111 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/0031356111

This document is currently not available here.

Share

COinS