Title

Extreme value probabilistic theory for mixed-mode brittle fracture

Keywords

Biaxial load; Brittle materials; Cracks; Fracture; Mixed mode; Probabilistic fracture; Reliability

Abstract

In this investigation, extreme value probabilistic methods are combined with Sih's mixed-mode fracture model to furnish strength distributions in plates of brittle materials with random cracks. The crack lengths are described by a two-parameter probability density function, their orientations follow a uniform distribution and the crack number follows a binomial distribution. Materials of interest are assumed to be isotropic and statistically homogeneous. A "weakest link" model, thought to be appropriate for brittle materials, is used in which catastrophic failure occurs if the dominant crack attains a critical condition. Extreme value distributions for strength of the plates are derived as a function of the size (crack number) of the plates, the parameters of the fracture model and the parameters of the crack length distribution. Numerical results are presented showing the effect of the normalized variance of the crack length distribution on the scale dependence of the mean and variance of the plate strength distribution. © 1997 Elsevier Science Ltd.

Publication Date

1-1-1997

Publication Title

Engineering Fracture Mechanics

Volume

58

Issue

1-2

Number of Pages

121-132

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/s0013-7944(97)00068-4

Socpus ID

0031220396 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/0031220396

This document is currently not available here.

Share

COinS