Title
Temperature-dependent absorptivity and cutting capability of CO2, Nd:YAG and chemical oxygen-iodine lasers
Keywords
Absorptivity; Chemical oxygen-iodine laser; CO 2; COIL; Laser cutting/materials processing; Mathematical modeling; Temperature-dependent absorptivity; Wavelength-dependent absorptivity; YAG
Abstract
The most widely used high power industrial lasers are the Nd:YAG and CO2 lasers. The chemical oxygen iodine laser (COIL), whose wavelength (1.315 μm) is between that of the Nd:YAG (1.06 μm) and CO2 (10.6 μm) lasers, is another high power laser for industrial applications. The cutting capability of these lasers is investigated in this paper. The cut depth strongly depends on the absorptivity of the cut material, kerf width and cutting speed. The absorptivity is an unknown parameter for which experimental data at high temperatures are currently unavailable. Theoretical values of the absorptivities of various metals are obtained using the Hagen-Ruben relationship. It is found that the absorptivity of a metal is linearly proportional to the square root of its resistivity and also inversely proportional to the square root of the wavelength. The absorptivities of the COIL and Nd:YAG lasers are 2.84 and 3.16 times larger than that of the CO2 laser, respectively. Based on these theoretical values of the absorptivity, the cut depths for several metals are analyzed at various laser powers and cutting speeds for these lasers. For identical cutting parameters, the cut depths for stainless steel and titanium are deeper than those of most other metals. Due to the wavelength dependence of the absorptivity, the cut depths for COIL and Nd:YAG lasers are expected to be 2.84 and 3.16 times deeper than that for the CO2 laser.
Publication Date
1-1-1997
Publication Title
Journal of Laser Applications
Volume
9
Issue
2
Number of Pages
77-85
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.2351/1.4745447
Copyright Status
Unknown
Socpus ID
0031122450 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0031122450
STARS Citation
Xie, J.; Kar, A.; and Rothenflue, J. A., "Temperature-dependent absorptivity and cutting capability of CO2, Nd:YAG and chemical oxygen-iodine lasers" (1997). Scopus Export 1990s. 2824.
https://stars.library.ucf.edu/scopus1990/2824