Title
Modal analysis of plates using the dual reciprocity boundary element method
Keywords
Boundary element method; dual reciprocity; modal analysis; plates
Abstract
This paper presents a new method for determining the natural frequencies and mode shapes for the free vibration of thin elastic plates using the boundary element and dual reciprocity methods. The solution to the plate's equation of motion is assumed to be of separable form. The problem is further simplified by using the fundamental solution of an infinite plate in the reciprocity theorem. Except for the inertia term, all domain integrals are transformed into boundary integrals using the reciprocity theorem. However, the inertia domain integral is evaluated in terms of the boundary nodes by using the dual reciprocity method. In this method, a set of interior points is selected and the deflection at these points is assumed to be a series of approximating functions. The reciprocity theorem is applied to reduce the domain integrals to a boundary integral. To evaluate the boundary integrals, the displacements and rotations are assumed to vary linearly along the boundary. The boundary integrals are discretized and evaluated numerically. The resulting matrix equations are significantly smaller than the finite element formulation for an equivalent problem. Mode shapes for the free vibration of circular and rectangular plates are obtained and compared with analytical and finite element results. © 1995.
Publication Date
1-1-1994
Publication Title
Engineering Analysis with Boundary Elements
Volume
14
Issue
4
Number of Pages
357-362
Document Type
Article
Identifier
scopus
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/0955-7997(94)90066-3
Copyright Status
Unknown
Socpus ID
0028738279 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0028738279
STARS Citation
Davies, T. W. and Moslehy, F. A., "Modal analysis of plates using the dual reciprocity boundary element method" (1994). Scopus Export 1990s. 289.
https://stars.library.ucf.edu/scopus1990/289