Title

Synchronous Amplitude And Time Control For An Optimum Dynamic Range Variable Photonic Delay Line

Abstract

A synchronous-amplitude-controlled and time-delay-controlled photonic controller for phased-array antenna applications is proposed and demonstrated. Amplitude control is based on a variable optical attenuator system that operates in synchronism with the photonic delay line (PDL). This amplitude control system can provide both the signal calibration for the different PDL channels and settings required for driving the antenna elements of a phased-array radar and the optimum optical power levels that impinge on the photodetector for optimum fiber-optic-link performance. Various variable amplitude control modules based on ferroelectric liquid crystals, polymer-dispersed liquid crystals, and photoconductive devices are proposed. We show that the dynamic range loss due to a switched-PDL inherent structure loss can be compensated when we control the optical power from the laser, using the synchronous optical attenuation system. For the first time to our knowledge, full dynamic range loss compensation is demonstrated for an external-modulation-fed 3-bit switched PDL with a structure optical insertion loss of 5.5 dB. A compression dynamic range of 158 dBzHz was measured at 6 GHz, and a spurious free dynamic range of 111 dBzHz2/3 was estimated. Feasibility of the dynamic range compensation technique for multichannel, higher-insertion-loss PDL systems is discussed. © 1999 Optical Society of America.

Publication Date

4-10-1999

Publication Title

Applied Optics

Volume

38

Issue

11

Number of Pages

2309-2318

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1364/AO.38.002309

Socpus ID

0032621668 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/0032621668

This document is currently not available here.

Share

COinS