Title
Polymethine And Squarylium Molecules With Large Excited-State Absorption
Abstract
We study nonlinear absorption in a series of ten polymethine dyes and two squarylium dyes using Z-scan, pump-probe and optical limiting experiments. Both picosecond and nanosecond characterization were performed at 532 nm, while picosecond measurements were performed using an optical parametric oscillator (OPO) from 440 to 650 nm. The photophysical parameters of these dyes including cross sections and excited-state lifetimes are presented both in solution in ethanol and in an elastopolymeric material, polyurethane acrylate (PUA). We determine that the dominant nonlinearity in all these dyes is large excited-state absorption (ESA), i.e. reverse saturable absorption. For several of the dyes we measure a relatively large ground-state absorption cross section, σ01, which effectively populates an excited state that possesses an extremely large ESA cross section, σ12. The ratios of σ12/σ01 are the largest we know of, up to 200 at 532 nm, and lead to very low thresholds for optical limiting. However, the lifetimes of the excited state are of the order of 1 ns in ethanol, which is increased to up to 3 ns in PUA. This lifetime is less than optimum for sensor protection applications for Q-switched inputs, and intersystem crossing times for these molecules are extremely long, so that triplet states are not populated. These parameters show a significant improvement over those of the first set of this class of dyes studied and indicate that further improvement of the photophysical parameters may be possible. From these measurements, correlations between molecular structure and nonlinear properties are made. We propose a five-level, all-singlet state model, which includes reorientation processes in the first excited state. This includes a trans-cis conformational change that leads to the formation of a new state with a new molecular configuration which is also absorbing but can undergo a light-induced degradation at high inputs.
Publication Date
7-1-1999
Publication Title
Chemical Physics
Volume
245
Issue
1-3
Number of Pages
79-97
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/S0301-0104(99)00086-5
Copyright Status
Unknown
Socpus ID
0033419108 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0033419108
STARS Citation
Lim, Jin Hong; Przhonska, Olga V.; and Khodja, Salah, "Polymethine And Squarylium Molecules With Large Excited-State Absorption" (1999). Scopus Export 1990s. 4134.
https://stars.library.ucf.edu/scopus1990/4134