Title
Mercurian Impact Craters: Implications For Polar Ground Ice
Keywords
Cratering; Ices; Mars; Mercury; Surfaces, planets
Abstract
Recent radar observations of Mercury have detected strong depolarized echoes from the north and south polar regions which have been interpreted by some as ice deposits in the floors of permanently shadowed impact craters. We have used the experience from Mars, where subsurface ice lowers the depth-to-diameter ratio (d/D) of impact craters, to test for subsurface ice deposits on Mercury. This analysis determines the d/D ratios for 170 impact craters in the Borealis (north polar), Tolstoj (equatorial), Kuiper (equatorial), and Bach (south polar) quadrangles of the planet. Possible effects from sun angle and terrain were eliminated. To test whether d/D differences could be detected at Mariner 10 resolutions (∼1 km/pixel), we perform a similar analysis using Mariner 9 images of Mars which have similar resolutions. We demonstrate that d/D differences due to terrain softening can be detected between craters in the martian polar regions and the equatorial regions at the Mariner 9 resolutions. Although our initial results indicate that the south polar Bach Quadrangle has a statistically lower d/D than the north polar (Borealis) or two equatorial (Tolstoj and Kuiper) quadrangles, further investigation reveals that this finding is most likely the result of the filtering which was applied to the images of the Bach quadrangle by JPL. Thus, no unequivocal evidence exists that the possible ice deposits in craters at Mercury's north and south poles are the exposed portions of more extensive subsurface ice caps. Combined with the temporal constraint imposed by the fact that the proposed ice deposits are found only in USGS Class 4 craters, this suggests a large, rapidly emplaced exogenic source of water to Mercury during the Mansurian period. We suggest that the source was multiple impacts from a fragmented comet or a comet shower. © 1999 Academic Press.
Publication Date
10-1-1999
Publication Title
Icarus
Volume
141
Issue
2
Number of Pages
194-204
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1006/icar.1999.6165
Copyright Status
Unknown
Socpus ID
0033209480 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0033209480
STARS Citation
Barlow, Nadine G.; Allen, Ruth A.; and Vilas, Faith, "Mercurian Impact Craters: Implications For Polar Ground Ice" (1999). Scopus Export 1990s. 4168.
https://stars.library.ucf.edu/scopus1990/4168