Title

Long-term performance and reliability assessment of crystalline silicon photovoltaic modules

Abstract

This study evaluates the long-term effects of outdoor exposure and high voltage operation on the performance and reliability of flat-plate crystalline silicon photovoltaic modules. The photovoltaic modules selected for this study were employed in the arrays of grid-connected residential photovoltaic prototype systems for over ten years at the Southeast Regional Experiment Station (SE RES) in Cape Canaveral, Florida. The modules included Mobil Ra-180 EFG ribbon silicon modules, Photowatt MU-7061 and ARCO 16-2000 single-crystal silicon modules with round cells. The Mobil and Photowatt modules were Block V generation, while the ARCO modules were Block IV generation type. In all three types of photovoltaic modules (Mobil, Photowatt and ARCO), no significant power loss occurred over more than ten years of outdoor operation in the warm, humid and ocean-salt environments of coastal Florida. However, the wet insulation resistance values of a majority of the modules in all three types were lower than the values recommended in IEEE Standard 1262. This indicates potential future safety, reliability and lifetime related problems. The visual defects were more pronounced in the ARCO modules, which were manufactured in 1980 than in the Mobil and Photowatt modules, both of which were fabricated in 1983. The ARCO modules showed significant damage to the back surface tedlar in the form of tearing of the tedlar. All of the Mobil and most of the ARCO modules showed significant browning of the encapsulant, while only about half of the Photowatt modules showed significant encapsulant browning. The encapsulant discoloration generally did not appear to have any effect on the modules' power generation.

Publication Date

12-1-1995

Publication Title

Proceedings of the Intersociety Energy Conversion Engineering Conference

Volume

2

Number of Pages

529-535

Document Type

Article

Identifier

scopus

Socpus ID

0029457573 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/0029457573

This document is currently not available here.

Share

COinS