Title

A Comparative Study Of Energy Minimization Methods For Markov Random Fields With Smoothness-Based Priors

Keywords

Belief propagation; Global optimization; Graph cuts; Markov random fields; Performance evaluation

Abstract

Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting energy minimization problems have been widely viewed as intractable. Recently, algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: for example, such methods form the basis for almost all the top-performing stereo methods. However, the tradeoffs among different energy minimization algorithms are still not well understood. In this paper we describe a set of energy minimization benchmarks and use them to compare the solution quality and running time of several common energy minimization algorithms. We investigate three promising recent methods graph cuts, LBP, and tree-reweighted message passing in addition to the well-known older iterated conditional modes (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching, interactive segmentation, and denoising. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization methods. Benchmarks, code, images, and results are available at http://vision.middlebury.edu/ MRF/. © 2008 IEEE.

Publication Date

6-1-2008

Publication Title

IEEE Transactions on Pattern Analysis and Machine Intelligence

Volume

30

Issue

6

Number of Pages

1068-1080

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1109/TPAMI.2007.70844

Socpus ID

43249091850 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/43249091850

This document is currently not available here.

Share

COinS