Title

Asymmetric Silicon Nitride Nanodendrites

Abstract

We have demonstrated the growth of asymmetric ordered Si3N 4 nanodendrites via the catalyst-assisted pyrolysis of a polymeric precursor. The growth of the unique structure is due to the usage of a co-catalyst composed of a Fe-Al mixture. First, Si3N4 stems grow at an early stage via a gas-solid process with Al being the catalyst. Fe is then selectively deposited on the negatively charged (010) surface of the Si3N4 stem to form catalytic droplets which promote the growth of the ordered nanowire branches. The novel nanostructures could be useful for the fabrication of nanodevices and nanocomposites. The principle demonstrated here is applicable for synthesizing ordered branched nanodendrites in other material systems. © 2008 American Chemical Society.

Publication Date

8-1-2008

Publication Title

Crystal Growth and Design

Volume

8

Issue

8

Number of Pages

2606-2608

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1021/cg701276t

Socpus ID

61549129941 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/61549129941

This document is currently not available here.

Share

COinS