Title

Anaerobic Metabolic Models For Phosphorus- And Glycogen-Accumulating Organisms With Mixed Acetic And Propionic Acids As Carbon Sources

Keywords

Acetic acid; Anaerobic metabolic model; Glycogen-accumulating organisms; Phosphorus-accumulating organisms; Propionic acid; Stoichiometry

Abstract

With acetate or propionate as the sole carbon source, anaerobic metabolic models describing phosphorus- and glycogen-accumulating organisms (PAO and GAO) have been developed in the literature. However, comprehensive models are in need for the description of PAO and GAO behaviors with mixed acetic and propionic acids as carbon sources since they are the two main volatile fatty acids (VFA) that coexist in real wastewater. Two metabolic models were proposed to characterize the anaerobic stoichiometry of PAO and GAO, respectively, and two groups of sequencing batch reactors (i.e. 5 PAO-SBRs and 5 GAO-SBRs) with different propionic to acetic acid ratios were used for the validation of the models. The experimental data indicated that polyhydroxyalkanoates were synthesized via random condensation in GAO cells, whereas the semi-selective/semi-random pathway was used for the integration of acetyl-CoA and propionyl-CoA in PAO cells. When the VFA was pure acetic or propionic acid, the proposed PAO (or GAO) model reverted back to the reported acetate or propionate PAO (or GAO) model. Results also showed that the energy required for the transportation of 1 C-mol VFA across the membrane of both PAO and GAO cells was independent of the propionate/acetate ratio. © 2008 Elsevier Ltd.

Publication Date

1-1-2008

Publication Title

Water Research

Volume

42

Issue

14

Number of Pages

3745-3756

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.watres.2008.06.025

Socpus ID

50449110703 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/50449110703

This document is currently not available here.

Share

COinS