Title
Explicit Boundary Element Method For Nonlinear Solid Mechanics Using Domain Integral Reduction
Abstract
Applied to solid mechanics problems with geometric nonlinearity, current finite element and boundary element methods face difficulties if the domain is highly distorted. Furthermore, current boundary element method (BEM) methods for geometrically nonlinear problems are implicit: the source term depends on the unknowns within the arguments of domain integrals. In the current study, a new BEM method is formulated which is explicit and whose stiffness matrices require no domain function evaluations. It exploits a rigorous incremental equilibrium equation. The method is also based on a Domain Integral Reduction Algorithm (DIRA), exploiting the Helmholtz decomposition to obviate domain function evaluations. The current version of DIRA introduces a major improvement compared to the initial version.
Publication Date
1-1-2000
Publication Title
Engineering Analysis with Boundary Elements
Volume
24
Issue
10
Number of Pages
707-713
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/S0955-7997(00)00053-9
Copyright Status
Unknown
Socpus ID
0034516493 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0034516493
STARS Citation
Nicholson, D. W. and Kassab, A. J., "Explicit Boundary Element Method For Nonlinear Solid Mechanics Using Domain Integral Reduction" (2000). Scopus Export 2000s. 1064.
https://stars.library.ucf.edu/scopus2000/1064