Title

Role-Based Teamwork Activity Recognition In Observations Of Embodied Agent Actions

Keywords

Embodied agents; Recognition; Roles; Teamwork

Abstract

Recognizing team actions in the behavior of embodied agents has many practical applications and had seen significant progress in recent years. One approach with proven results is based on HMM-based recognition of spatio-temporal patterns in the behavior of the agents. While it had been shown to work on real-world datasets, this approach was found to be brittle. In this paper we present two contributions which together can significantly increase the robustness of teamwork activity recognition. First we introduce a technique to reduce high dimensional continuous input data to a set of discrete features, which capture the essential components of the team actions. Second, we prefix the actual team action recognition with a role recognition module, which allows us to present the recognizer with arbitrarily shuffled input, and still obtain high recognition rates. We validate the improved accuracy and robustness of the team action recognizer on datasets derived from captured real world data. Copyright © 2008, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Publication Date

1-1-2008

Publication Title

Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS

Volume

1

Number of Pages

558-565

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

Socpus ID

84899991996 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84899991996

This document is currently not available here.

Share

COinS