Title
An Efficient Active Set Method For Svm Training Without Singular Inner Problems
Abstract
Efficiently implemented active set methods have been successfully applied to Support Vector Machine (SVM) training. These active set methods offer higher precision and incremental training at the cost of additional memory requirements when compared to decomposition methods such as Sequential Minimal Optimization (SMO). However, all existing active set methods must deal with singularities occurring within the inner problem solved at each iteration, a problem that leads to more complex implementation and potential inefficiencies. Here, we introduce a revised simplex method, originally introduced by Rusin, adapted for SVM training and show this is an active set method similar to most existing methods with the advantage of maintaining nonsingularity of the inner problem. We compare performance to an existing active set method introduced by Scheinberg and demonstrate an improvement in training times, in some cases. We show our method maintains a slightly simpler implementation and offers advantages in terms of applying iterative methods to alleviate memory concerns. We also show performance of the active set methods when compared to state-of-theart decomposition implementations such as SVMLight and SMO. © 2009 IEEE.
Publication Date
11-18-2009
Publication Title
Proceedings of the International Joint Conference on Neural Networks
Number of Pages
2875-2882
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
DOI Link
https://doi.org/10.1109/IJCNN.2009.5178948
Copyright Status
Unknown
Socpus ID
70449395243 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/70449395243
STARS Citation
Sentelle, Christopher; Anagnostopoulos, Georgios C.; and Georgiopoulos, Michael, "An Efficient Active Set Method For Svm Training Without Singular Inner Problems" (2009). Scopus Export 2000s. 11502.
https://stars.library.ucf.edu/scopus2000/11502