Title
Estimating Jones And Homfly Polynomials With One Clean Qubit
Keywords
Homfly; Jones polynomial; One clean qubit
Abstract
The Jones and HOMFLY polynomials are link invariants with close connections to quantum computing. It was recently shown that finding a certain approximation to the Jones polynomial of the trace closure of a braid at the fifth root of unity is a complete problem for the one clean qubit complexity class[18]. This is the class of problems solvable in polynomial time on a quantum computer acting on an initial state in which one qubit is pure and the rest are maximally mixed. Here we generalize this result by showing that one clean qubit computers can efficiently approximate the Jones and single - variable HOMFLY polynomials of the trace closure of a braid at any root of unity. © Rinton Press.
Publication Date
3-1-2009
Publication Title
Quantum Information and Computation
Volume
9
Issue
3-4
Number of Pages
264-289
Document Type
Article
Personal Identifier
scopus
Copyright Status
Unknown
Socpus ID
66449109432 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/66449109432
STARS Citation
Jordan, Stephen P. and Wocjan, Pawel, "Estimating Jones And Homfly Polynomials With One Clean Qubit" (2009). Scopus Export 2000s. 12026.
https://stars.library.ucf.edu/scopus2000/12026