Title

Variation Of Water Retention Characteristics Due To Particle Rearrangement Under Zero Gravity

Keywords

Particles; Soil compaction; Soil water; Vegetation

Abstract

Controlled delivery of water to plant root zone remains a challenge in the exploration of plant growth under zero gravity, in which soil water retention characteristics are difficult to predict due to possible soil particle rearrangement and pore restructuring. This paper aims to provide an understanding of the effect of soil particle rearrangement on the water retention characteristics in zero gravity. A three-dimensional pore network model is developed to predict water retention characteristics under two forms of particle packing-cubic packing (most porous) and rhombohedral packing (most compact). The pore-throat distributions, as input parameters to the network model, are derived from particle size distribution under the two forms of particle arrangement. The model simulations reveal the quantitative variation of water retention characteristics due to particle rearrangement. Soil particle rearrangement that occurs during the drying process is shown to significantly change the water retention curve when a soil is near saturation. When the soil is near residual water content, the particle rearrangement has little effect on the water retention curve. The model results indicated that an increase in packing density results in decreased water content at saturation, increased bubbling pressure, and accentuated water retention hysteresis. The model also reveals nonuniform spatial distribution of pore fluid in porous medium in zero gravity. Although this paper studied the soil-water characteristics from the microgravity perspective, its results also contribute to the understanding of the soil-water characteristics due to soil compaction on Earth. © 2009 ASCE.

Publication Date

1-1-2009

Publication Title

International Journal of Geomechanics

Volume

9

Issue

4

Number of Pages

179-186

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(179)

Socpus ID

68049111495 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/68049111495

This document is currently not available here.

Share

COinS