Title
Rnn Based Photo-Resist Shape Reconstruction From Scanning Electron Microscopy
Abstract
In this paper we introduce several novel random neural network [Gelenbe89, Gelenbe90, Gelenbe93, Gelenbe99] based techniques to address a difficult `inverse problem' in semiconductor fabrication metrology. The problem is that of deducing a chip's vertical cross-section from two-dimensional top-down scanning electron microscope images of the chip surface. Our results are illustrated with a variety of real data sets. In semiconductor chip fabrication, photo resistive material is used as an overlay which will protect substrate areas (typically metal) which must remain on the chip after other unprotected substrate areas are etched off. The shape and size of the photo-resist material, at the submicron level, is therefore largely responsible for the shape and quality of the protected substrate. Critical dimension scanning electron microscopy (SEM) is used to determine this shape, and the research addressed in this paper proposes new methods using learning neural networks, combined with physical modelling, to accurately obtain surface shape information from SEM imaging.
Publication Date
1-1-2000
Publication Title
Proceedings of the International Joint Conference on Neural Networks
Volume
5
Number of Pages
221-226
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
Copyright Status
Unknown
Socpus ID
0033686668 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0033686668
STARS Citation
Gelenbe, Erol and Wang, Rong, "Rnn Based Photo-Resist Shape Reconstruction From Scanning Electron Microscopy" (2000). Scopus Export 2000s. 1274.
https://stars.library.ucf.edu/scopus2000/1274