Title

Multiphoton-Absorbing Organic Materials For Microfabrication, Emerging Optical Applications And Non-Destructive Three-Dimensional Imaging

Keywords

Fluorescence imaging; Microfabrication; Photo-polymerization; Photoisomerization; Two-photon absorption

Abstract

Non-resonant two-photon absorption (TPA) can be defined as the simultaneous absorption of two photons, via a virtual state, in a medium. TPA exhibits a quadratic dependence of absorption on the incident light intensity, resulting in highly localized photoexcitation. Recent developments in the design and synthesis of efficient, stable TPA organic materials are discussed. Microfabrication via two-photon induced free radical polymerization of acrylate monomers and cationic polymerization of epoxide monomers was accomplished using commercially available photoinitiators, and also a custom-made compound possessing high two-photon absorptivity. Two-photon facilitated photoisomerization of a fulgide in solution and in a polymer thin film demonstrated two-photon induced photochromism and its application in interferometric image recording, respectively. Greatly enhanced signal-to-noise ratios and resolution were achieved in the non-destructive three-dimensional two-photon fluorescence imaging of a polymer-coated substrate versus conventional single-photon laser scanning confocal microscopic imaging. Multifunctional TPA organic materials and fabrication of functional microstructures are also discussed. Copyright © 2000 John Wiley & Sons, Ltd.

Publication Date

1-1-2000

Publication Title

Journal of Physical Organic Chemistry

Volume

13

Issue

12

Number of Pages

837-849

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1002/1099-1395(200012)13:12<837::AID-POC315>3.0.CO;2-5

Socpus ID

0001669686 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/0001669686

This document is currently not available here.

Share

COinS