Title
Construction Of Fast Recovery Codes Using A New Optimal Importance Sampling Method
Keywords
Convolutional codes; Fast simulation; Importance sampling (IS); M-algorithm (MA); Markov systems; Sequential decoding
Abstract
In this correspondence, we introduce the problem of constructing good fast recovery convolutional codes. When the constraint lengths of the candidate codes are long (say more than 12), it is too computationally complex to perform the code search task. Fortunately, we can transform the code construction problem to a problem related to a transient Markov system. We then develop an optimal importance sampling (IS) method to fulfill the tasks. In this correspondence, we also prove several propositions for optimal IS. For Instance, we show analytically that the optimal IS method is unique. We prove that the optimal IS method must converge to the standard Monte Carlo (MC) simulation method when the sample path length approaches Infinity. This finding shows that it is not the size of the state space of the Markov system, but the sample path length, that limits the efficiency of the IS method. Based on insights from the optimal IS method, a sub-optimal IS method is then proposed to search for long fast recovery codes. The sub-optimal method can achieve a substantial speedup gain. After that, several numerical results are presented to study the efficiency of the IS methods and to justify the code search procedures. Finally, we give the code search results and the application of these codes.
Publication Date
11-1-2001
Publication Title
IEEE Transactions on Information Theory
Volume
47
Issue
7
Number of Pages
3006-3019
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1109/18.959280
Copyright Status
Unknown
Socpus ID
0035504621 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0035504621
STARS Citation
Wei, Michael Yung Chung and Wei, Lei, "Construction Of Fast Recovery Codes Using A New Optimal Importance Sampling Method" (2001). Scopus Export 2000s. 138.
https://stars.library.ucf.edu/scopus2000/138