Title
Cross-Validation In Fuzzy Artmap For Large Databases
Keywords
Cross-validation; Fuzzy ARTMAP; Generalization performance; Overtraining
Abstract
In this paper we are examining the issue of overtraining in Fuzzy ARTMAP. Over-training in Fuzzy ARTMAP manifests itself in two different ways: (a) it degrades the generalization performance of Fuzzy ARTMAP as training progresses; and (b) it creates unnecessarily large Fuzzy ARTMAP neural network architectures. In this work, we are demonstrating that overtraining happens in Fuzzy ARTMAP and we propose an old remedy for its cure: cross-validation. In our experiments, we compare the performance of Fuzzy ARTMAP that is trained (i) until the completion of training, (ii) for one epoch, and (iii) until its performance on a validation set is maximized. The experiments were performed on artificial and real databases. The conclusion derived from those experiments is that cross-validation is a useful procedure in Fuzzy ARTMAP, because it produces smaller Fuzzy ARTMAP architectures with improved generalization performance. The trade-off is that cross-validation introduces additional computational complexity in the training phase of Fuzzy ARTMAP. Copyright © 2001 Elsevier Science Ltd.
Publication Date
10-10-2001
Publication Title
Neural Networks
Volume
14
Issue
9
Number of Pages
1279-1291
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/S0893-6080(01)00090-9
Copyright Status
Unknown
Socpus ID
0034805236 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0034805236
STARS Citation
Koufakou, Anna; Georgiopoulos, Michael; and Anagnostopoulos, George, "Cross-Validation In Fuzzy Artmap For Large Databases" (2001). Scopus Export 2000s. 152.
https://stars.library.ucf.edu/scopus2000/152