Title

Novel Dynamics In The Nonlinear Evolution Of The Kelvin-Helmholtz Instability Of Supersonic Anisotropic Tangential Velocity Discontinuities

Keywords

CHAOS; Compressible anisotropic; Nonlinear instability; Quasi-periodicity

Abstract

A nonlinear stability analysis using a multiple-scales perturbation procedure is performed for the instability of two layers of immiscible, strongly anisotropic, magnetized, inviscid, arbitrarily compressible fluids in relative motion. Such configurations are of relevance in a variety of astrophysical and space configurations. For modes near the critical point of the linear neutral curve, the nonlinear evolution of the amplitude of the linear fields on the slow first-order scales is shown to be governed by a complicated nonlinear Klein-Gordon equation. The nonlinear coefficient turns out to be complex, which is, to the best of our knowledge, unlike previously considered cases and leads to completely different dynamics from that reported earlier. Both the spatially-dependent and space-independent versions of this equation are considered to obtain the regimes of physical parameter space where the linearly unstable solutions either evolve to final permanent envelope wave patterns resembling the ensembles of interacting vortices observed empirically, or are disrupted via nonlinear modulation instability. In particular, the complex nonlinearity allows the existence of quasi-periodic and chaotic wave envelopes, unlike in earlier physical models governed by nonlinear Klein-Gordon equations. © 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.

Publication Date

8-1-2001

Publication Title

Mathematics and Computers in Simulation

Volume

55

Issue

4-6

Number of Pages

377-391

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/S0378-4754(00)00304-9

Socpus ID

0034922763 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/0034922763

This document is currently not available here.

Share

COinS