Title

Configuration Analysis Of Two-Vehicle Rear-End Crashes

Abstract

Light truck vehicles (LTVs), including light-duty trucks, vans, minivans, and sport-utility vehicles, are generally larger than common passenger cars and are able to take on additional tasks. LTVs usually ride higher than other common passenger cars, which likely affects the visibility of passenger car drivers. The role of LTVs in rear-end crashes was investigated. The use of statistical models of unordered multiple categories was attempted, including multinomial logit (MNL), heteroscedastic extreme value (HEV), and bivariate probit (BVP) models. Four different rear-end crash configurations (lead and following vehicles) were defined on the basis of the type of the two vehicles involved (LTV or regular passenger car). General Estimates System (GES 2000) traffic crash data were used to calibrate the three suggested models (the MNL, HEV, and BVP models). Modeling results showed that there are sight distance and discomfort problems when a driver in a regular passenger car is driving behind an LTV. The probability of a rear-end crash involving a regular passenger car striking an LTV increases when the driver of the following vehicle is distracted. The analysis also illustrates that the probability of a regular car striking an LTV increases when the driver of the following vehicle has an obscured view.

Publication Date

1-1-2003

Publication Title

Transportation Research Record

Issue

1840

Number of Pages

140-147

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

DOI Link

https://doi.org/10.3141/1840-16

Socpus ID

1842428123 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/1842428123

This document is currently not available here.

Share

COinS