Title

An Alternative Compressed Storage Format For Sparse Matrices

Abstract

The handling of the sparse matrix vector product(SMVP) is a common kernel in many scientific applications. This kernel is an irregular problem, which has led to the development of several compressed storage formats such as CRS, CCS, and JDS among others. We propose an alternative storage format, the Transpose Jagged Diagonal Storage(TJDS), which is inspired from the Jagged Diagonal Storage format and makes no assumptions about the sparsity pattern of the matrix. We present a selection of sparse matrices and compare the storage requirements needed using JDS and TJDS formats, and we show that the TDJS format needs less storage space than the JDS format because the permutation array is not required. Another advantage of the proposed format is that although TJDS also suffers the drawback of indirect addressing, it does not need the permutation step after the computation of the SMVP. © Springer-Verlag Berlin Heidelberg 2003.

Publication Date

1-1-2003

Publication Title

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Volume

2869

Number of Pages

196-203

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1007/978-3-540-39737-3_25

Socpus ID

0142215175 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/0142215175

This document is currently not available here.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 17
  • Usage
    • Abstract Views: 2
  • Captures
    • Readers: 10
see details

Share

COinS