Title

High-Performance Iterative Viterbi Algorithm For Conventional Serial Concatenated Codes

Creator

Lei Wei, IEEE

Keywords

Bootstrap decoding; Iterative decoding; Serial concatenated systems (SCC); Turbo decoding; Viterbi algorithm (VA)

Abstract

The Viterbi algorithm (VA) and conventional serial concatenated codes (CSCC) have been widely applied in digital communication systems over the last 30 years. In this paper, we show that the Shannon capacity of additive white Gaussian noise (AWGN) channels can be approached by CSCCs and the iterative VA (IVA). We firstly study the algebraic properties of CSCCs. We then present the IVA to decode these codes. We also analyze the performance of the IVA and conclude that a better performance can be achieved if we replace the powerful block codes by some simple parity codes. One of the key results in this paper shows that by using a proper design for the decoding method, codes with small loops can be very efficiently decoded using a min-sum type algorithm. The numerical results show that the IVA can closely approach the Shannon sphere-packing lower bound and the Shannon limit. For block sizes ranging from 56 information bits to 11970 information bits, the IVA can perform to within about 1 dB of the Shannon sphere-packing lower bound at a block error rate of 10 -4. We show that the IVA has very low complexity and can be applied to many current standard systems, for example, the Qualcomm code-division multiple-access (CDMA) system and the NASA concatenated system, with very little modification or, for some cases, without any modification.

Publication Date

7-1-2002

Publication Title

IEEE Transactions on Information Theory

Volume

48

Issue

7

Number of Pages

1759-1771

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1109/TIT.2002.1013124

Socpus ID

0036648873 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/0036648873

This document is currently not available here.

Share

COinS