Title
Nanoconstruction Of Microspheres And Microcapsules Using Proton-Induced Phase Transitions: Molecular Self-Recognition By Diamide Diacids In Water
Abstract
Bis(Nα-amido-L-phenylalanine)-1,1-cyclobutane dicarboxylate (5) was studied by Fourier transform infrared (FTIR) spectroscopy, variable-temperature NMR (VT-NMR), transmission electron microscopy, X-ray crystallography, Raman microscopy, and a novel imaging technique known as "soft" X-ray microscopy (XRM). Diamide diacid 5 was shown to self-associate into solid microspheres during a proton-induced phase transition from the solvated state to the desolvated assembled state. These diverse techniques allowed for the delineation of the molecular recognition events involved in the assembly process. X-ray crystallography revealed that 5 packs in a bundled helical array comprised of two types of intermolecular hydrogen bonds (i.e., OC=O···HN and COOH···O=CN). VT-NMR and IR measurements of 5 (1 mM in CDCl3) revealed the small temperature dependence of the amide NH chemical shift (Δδ/ΔT = -1.1 ppb/K) and the availability of the "free" amide NH of 5 to form intermolecular hydrogen bonds. Supramolecular rodlike structures were observed during the aqueous assembly of 5 into microspheres by XRM. Raman microscopy confirmed that nearly identical bonding patterns are present in the assembled microsphere and the crystal architecture of 5. Collectively, these observations provide compelling evidence that the assembly of 5 occurs via crystalline supramolecular intermediates, which are similar in shape and have complementary bonding motifs for proper self-recognition. Competition experiments involving varying concentrations of 5 and its microcapsule-forming cyclopropane analogue 3 revealed that molecular fidelity was less important to the microsphere-forming process than the related capsule-forming process.
Publication Date
3-19-2001
Publication Title
Chemistry of Materials
Volume
13
Issue
2
Number of Pages
264-272
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1021/cm0006547
Copyright Status
Unknown
Socpus ID
0035090803 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0035090803
STARS Citation
Phanstiel IV, O.; Lachicotte, R. J.; and Torres, D., "Nanoconstruction Of Microspheres And Microcapsules Using Proton-Induced Phase Transitions: Molecular Self-Recognition By Diamide Diacids In Water" (2001). Scopus Export 2000s. 284.
https://stars.library.ucf.edu/scopus2000/284