Title

An Efficient Localized Rbf Meshless Method Applied To Fluid Flow And Conjugate Heat Transfer

Abstract

A localized radial basis function (RBF) meshless method is developed for coupled viscous fluid flow and convective heat transfer problems. The method is based on new localized radial-basis function (RBF) expansions using Hardy Multiquadrics for the sought-after unknowns. An efficient set of formulae are derived to compute the RBF interpolation in terms of vector products thus providing a substantial computational savings over traditional meshless methods. Moreover, the approach developed in this paper is applicable to explicit or implicit time marching schemes as well as steady-state iterative methods. We apply the method to viscous fluid flow and conjugate heat transfer (CHT) modeling. The incompressible Navier-Stokes are time marched using a Helmholtz potential decomposition for the velocity field. When CHT is considered, the same RBF expansion is used to solve the heat conduction problem in the solid regions enforcing temperature and heat flux continuity of the solid/fluid interfaces. The computation is accelerated by distributing the load over several processors via a domain decomposition along with an interface interpolation tailored to pass information through each of the domain interfaces to ensure conservation of field variables and derivatives. Numerical results are presented for several cases including channel flow, flow in a channel with a square step obstruction, and a jet flow into a square cavity. Results are compared with commercial computational fluid dynamics code predictions. The proposed localized meshless method approach is shown to produce accurate results while requiring a much-reduced effort in problem preparation in comparison to other traditional numerical methods. Copyright © 2005 by ASME.

Publication Date

12-1-2005

Publication Title

American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD

Volume

376 HTD

Issue

1

Number of Pages

241-250

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

DOI Link

https://doi.org/10.1115/IMECE2005-82150

Socpus ID

33645682775 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/33645682775

This document is currently not available here.

Share

COinS