Title

Evaluation Of Thermal Degradation Of 2.25Cr-1Mo Steel By High Frequency Ultrasonic Attenuation Measurement

Keywords

2.25Cr-1Mo steel; Nondestructive evaluation; Thermal degradation; Ultrasonic attenuation

Abstract

It was attempted to assess nondestructively the degree of isothermal degradation of 2.25Cr-1Mo steel by using high frequency longitudinal ultrasonic wave. Microstructural parameter (mean size of carbides), mechanical property (Vickers hardness) and ultrasonic attenuation coefficient were measured for the 2.25Cr-1Mo steel isothermally degraded at 630°C for up to 4800 hours in order to find the correlation among these parameters. The ultrasonic attenuation coefficients at high frequencies (over 35 MHz) were observed to increase rapidly in the initial 1000 hours of degradation time and then slowly thereafter, while the ones at low frequencies showed no noticeable increase. Ultrasonic attenuation at high frequencies increased as a function of mean size of carbides. Ultrasonic attenuation coefficient was found to have a linear correlation with the hardness, and suggested accordingly as a potential nondestructive evaluation parameter for assessing the mechanical strength reduction of the isothermally degraded 2.25Cr-1Mo steel. © 2005 Trans Tech Publications, Switzerland.

Publication Date

1-1-2005

Publication Title

Materials Science Forum

Volume

475-479

Issue

I

Number of Pages

257-260

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

DOI Link

https://doi.org/10.4028/0-87849-960-1.257

Socpus ID

17144380087 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/17144380087

This document is currently not available here.

Share

COinS