Title

Parallel-Iterative Domain Decomposition For 2D Thermoelastic Problems Using The Boundary Element Method

Keywords

Boundary element method; Domain decomposition; Parallel computation; Thermoelasticity

Abstract

The Boundary Element Method (BEM) requires only a surface mesh to solve thermoelasticity problems. However, the resulting matrices are fully-populated and non-diagonally dominant. This poses serious challenges for large-scale problems due to storage requirements and the solution of large sets of non-symmetric systems of equations. In this article, an effective and efficient domain decomposition, or artificial sub-sectioning technique, along with a region-by-region iteration algorithm particularly tailored for parallel computation to address these issues is developed. The domain decomposition approach effectively reduces the condition numbers of the resulting algebraic systems, while increasing efficiency of the solution process and decreasing memory requirements. The iterative process converges very efficiently while offering substantial savings in memory. The iterative domain decomposition technique is ideally suited for parallel computation. Results demonstrate the validity of the approach by providing solutions that compare closely to single-region BEM solutions and benchmark analytical solutions.

Publication Date

12-1-2007

Publication Title

Acta Cientifica Venezolana

Volume

58

Issue

1

Number of Pages

6-13

Document Type

Article

Personal Identifier

scopus

Socpus ID

72149088994 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/72149088994

This document is currently not available here.

Share

COinS