Title
Nonlinear Cooperative Control For Consensus Of Nonlinear And Heterogeneous Systems
Abstract
In this paper, the consensus problem is considered for nonlinear and heterogeneous systems. Topology of their sensing/communication network is allowed to change in an arbitrary and intermittent way. A matrix-theoretical approach is used to reveal the necessary and sufficient condition of cooperative controllability. The condition is then used to search for cooperative control Lyapunov function (with the same Lyapunov function components) for linear cooperative systems. It is shown that, although finding cooperative control Lyapunov function is often too difficult for nonlinear systems, their cooperative stability can be concluded if the Lyapunov function components satisfy certain differential inequalities along system trajectory. This new result enables an explicit Lyapunov argument with respect to topology changes and a constructive procedure of designing nonlinear cooperative controls for a class of nonlinear and heterogeneous systems. Examples are presented to illustrate effectiveness of the proposed nonlinear cooperative controls. ©2007 IEEE.
Publication Date
12-1-2007
Publication Title
Proceedings of the IEEE Conference on Decision and Control
Number of Pages
2301-2308
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
DOI Link
https://doi.org/10.1109/CDC.2007.4434203
Copyright Status
Unknown
Socpus ID
62749085754 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/62749085754
STARS Citation
Qu, Zhihua; Chunyu, Jiangmin; and Wang, Jing, "Nonlinear Cooperative Control For Consensus Of Nonlinear And Heterogeneous Systems" (2007). Scopus Export 2000s. 6026.
https://stars.library.ucf.edu/scopus2000/6026