Title
A Defined System To Allow Skeletal Muscle Differentiation And Subsequent Integration With Silicon Microstructures
Keywords
Defined system; Hybrid devices; MEMS; Myotubes; Serum-free
Abstract
This work documents the development of an in vitro cell culture model consisting of a novel serum-free medium and a non-biological growth substrate, N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), to enable functional myotube integration with cantilevers fabricated using MEMS technology. This newly developed, defined in vitro model was used to study the differentiation of fetal rat skeletal muscle and it promoted the formation of myotubes from the dissociated rat fetal muscle cells. The myotubes were characterized by morphological analysis, immunocytochemistry and electrophysiology. Further, it was demonstrated that when the dissociated muscle cells were plated on fabricated microcantilevers, the muscle cells aligned along the major axis of the cantilever and formed robust myotubes. This novel system could not only find applications in skeletal muscle differentiation and biocompatibility studies but also in bioartificial muscle engineering, hybrid actuation system development, biorobotics and for a better understanding of myopathies and neuromuscular disorders. © 2006 Elsevier Ltd. All rights reserved.
Publication Date
8-1-2006
Publication Title
Biomaterials
Volume
27
Issue
24
Number of Pages
4374-4380
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/j.biomaterials.2006.03.046
Copyright Status
Unknown
Socpus ID
33646382101 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/33646382101
STARS Citation
Das, Mainak; Gregory, Cassie A.; Molnar, Peter; Riedel, Lisa M.; and Wilson, Kerry, "A Defined System To Allow Skeletal Muscle Differentiation And Subsequent Integration With Silicon Microstructures" (2006). Scopus Export 2000s. 8057.
https://stars.library.ucf.edu/scopus2000/8057