Title

Simulation And Experimental Characterization Of Electroosmotic Flow In Surface Modified Channels

Keywords

Dispersion; Electroosmosis; Polymer devices; Simulation; Surface oxidation

Abstract

Covalent surface modification techniques, in particular surface oxidation procedures, have been employed as a mean to modify polymer microfluidic channels for the purpose of modulating microflow. The focus of this work is to experimentally and computationally characterize electroosmotic flow (EOF) to understand the impact of surface modifications and buffer pH on sample mixing and dispersion. The experimental results are used to calibrate and validate the simulation model that solves the Navier-Stokes equation for fluid flow and Poisson equation to resolve external electric field. Experimental and simulated results are presented for hybrid microfluidic systems, consisting of both pristine polymer surfaces and chemically modified polymer surfaces. The results show that the selective surface modification induces hydrodynamic pressure gradient, leading to enhanced sample dispersion. The mass flow rate increases linearly with the level of oxidation. All channels (pristine, oxidized, and hybrid) showed an increasing EOF with increasing pH until the near neutral regime (7 < pH < 9), where the EOF leveled off at a maximum value - behavior that is typical of a microchannel with negative surface moieties populating its surface. © Springer-Verlag 2006.

Publication Date

7-1-2006

Publication Title

Microfluidics and Nanofluidics

Volume

2

Issue

4

Number of Pages

345-355

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1007/s10404-006-0077-8

Socpus ID

33745443235 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/33745443235

This document is currently not available here.

Share

COinS