Title
Frontiers In Interpolation And Approximation
Abstract
Dedicated to the well-respected research mathematician Ambikeshwar Sharma, Frontiers in Interpolation and Approximation explores approximation theory, interpolation theory, and classical analysis. Written by authoritative international mathematicians, this book presents many important results in classical analysis, wavelets, and interpolation theory. Some topics covered are Markov inequalities for multivariate polynomials, analogues of Chebyshev and Bernstein inequalities for multivariate polynomials, various measures of the smoothness of functions, and the equivalence of Hausdorff continuity and pointwise Hausdorff-Lipschitz continuity of a restricted center multifunction. The book also provides basic facts about interpolation, discussing classes of entire functions such as algebraic polynomials, trigonometric polynomials, and nonperiodic transcendental entire functions. Containing both original research and comprehensive surveys, this book provides researchers and graduate students with important results of interpolation and approximation.
Publication Date
1-1-2006
Publication Title
Frontiers in Interpolation and Approximation
Number of Pages
1-431
Document Type
Article; Book Chapter
Personal Identifier
scopus
Copyright Status
Unknown
Socpus ID
34547522126 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/34547522126
STARS Citation
Govil, N. K.; Mhaskar, H. N.; Mohapatra, Ram N.; Nashed, Zuhair; and Szabados, J., "Frontiers In Interpolation And Approximation" (2006). Scopus Export 2000s. 8944.
https://stars.library.ucf.edu/scopus2000/8944