Title
Global Domination In Planar Graphs
Keywords
Domination; Global domination; Planar graphs
Abstract
For any graph G = (V, E), D ⊆ V is a global dominating set if D dominates both G and its complement Ḡ. The global domination number γg(G) of a graph G is the fewest number of vertices required of a global dominating set. In general, max {γ(G), γ(Ḡ)} ≤ γg(G) ≤ γ(G)+γ(Ḡ), where γ(G) and γ(Ḡ) are the respective domination numbers of G and Ḡ. We show, when G is a planar graph, that γg(G) ≤ max {γ(G)+1, A}.
Publication Date
8-1-2008
Publication Title
Journal of Combinatorial Mathematics and Combinatorial Computing
Volume
66
Number of Pages
273-278
Document Type
Article
Personal Identifier
scopus
Copyright Status
Unknown
Socpus ID
78651571934 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/78651571934
STARS Citation
Enciso, Rosa I. and Dutton, Ronald D., "Global Domination In Planar Graphs" (2008). Scopus Export 2000s. 9820.
https://stars.library.ucf.edu/scopus2000/9820