Title
Techniques For Analyzing Dynamic Random Graph Models Of Web-Like Networks: An Overview
Keywords
Dynamic random graphs; Scale-free networks; Web graphs
Abstract
Various random graph models have recently been proposed to replicate and explain the topology of large, complex, real-life networks such as the World Wide Web and the Internet. These models are surveyed in this article. Our focus has primarily been on dynamic random graph models that attempt to account for the observed statistical properties of web-like networks through certain dynamic processes guided by simple stochastic rules. Particular attention is paid to the equivalence between mathematical definitions of dynamic random graphs in terms of inductively defined probability spaces and algorithmic definitions of such models in terms of recursive procedures. Several techniques that have been employed for studying dynamic random graphs-both heuristic and analytic-are expounded. Each technique is illustrated through its application in analyzing various graph parameters, such as degree distribution, degreecorrelation between adjacent nodes, clustering coefficient, distribution of node-pair distances, and connected-component size. A discussion of the most recent salient work and a comprehensive list of references in this rapidly-expanding area are included. © 2007 Wiley Periodicals, Inc.
Publication Date
7-1-2008
Publication Title
Networks
Volume
51
Issue
4
Number of Pages
211-255
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1002/net.20215
Copyright Status
Unknown
Socpus ID
51449104504 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/51449104504
STARS Citation
Cami, Aurel and Deo, Narsingh, "Techniques For Analyzing Dynamic Random Graph Models Of Web-Like Networks: An Overview" (2008). Scopus Export 2000s. 9981.
https://stars.library.ucf.edu/scopus2000/9981