Title
Svm-Like Decision Theoretical Classification Of High-Dimensional Vectors
Keywords
Decision theoretical approach; Posterior probabilities; Support vector machine
Abstract
In this paper, we consider the classification of high-dimensional vectors based on a small number of training samples from each class. The proposed method follows the Bayesian paradigm, and it is based on a small vector which can be viewed as the regression of the new observation on the space spanned by the training samples. The classification method provides posterior probabilities that the new vector belongs to each of the classes, hence it adapts naturally to any number of classes. Furthermore, we show a direct similarity between the proposed method and the multicategory linear support vector machine introduced in Lee et al. [2004. Multicategory support vector machines: theory and applications to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association 99 (465), 67-81]. We compare the performance of the technique proposed in this paper with the SVM classifier using real-life military and microarray datasets. The study shows that the misclassification errors of both methods are very similar, and that the posterior probabilities assigned to each class are fairly accurate. © 2009 Elsevier B.V. All rights reserved.
Publication Date
3-1-2010
Publication Title
Journal of Statistical Planning and Inference
Volume
140
Issue
3
Number of Pages
705-718
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/j.jspi.2009.09.001
Copyright Status
Unknown
Socpus ID
70350728401 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/70350728401
STARS Citation
Bradshaw, David J. and Pensky, Marianna, "Svm-Like Decision Theoretical Classification Of High-Dimensional Vectors" (2010). Scopus Export 2010-2014. 1274.
https://stars.library.ucf.edu/scopus2010/1274