Title
A Fast Outlier Detection Strategy For Distributed High-Dimensional Data Sets With Mixed Attributes
Keywords
Anomaly detection; Data mining; Distributed data sets; High-dimensional data sets; Mixed attribute data sets; Outlier detection
Abstract
Outlier detection has attracted substantial attention in many applications and research areas; some of the most prominent applications are network intrusion detection or credit card fraud detection. Many of the existing approaches are based on calculating distances among the points in the dataset. These approaches cannot easily adapt to current datasets that usually contain a mix of categorical and continuous attributes, and may be distributed among different geographical locations. In addition, current datasets usually have a large number of dimensions. These datasets tend to be sparse, and traditional concepts such as Euclidean distance or nearest neighbor become unsuitable. We propose a fast distributed outlier detection strategy intended for datasets containing mixed attributes. The proposed method takes into consideration the sparseness of the dataset, and is experimentally shown to be highly scalable with the number of points and the number of attributes in the dataset. Experimental results show that the proposed outlier detection method compares very favorably with other state-of-the art outlier detection strategies proposed in the literature and that the speedup achieved by its distributed version is very close to linear.
Publication Date
3-1-2010
Publication Title
Data Mining and Knowledge Discovery
Volume
20
Issue
2
Number of Pages
259-289
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1007/s10618-009-0148-z
Copyright Status
Unknown
Socpus ID
77649275031 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/77649275031
STARS Citation
Koufakou, Anna and Georgiopoulos, Michael, "A Fast Outlier Detection Strategy For Distributed High-Dimensional Data Sets With Mixed Attributes" (2010). Scopus Export 2010-2014. 1362.
https://stars.library.ucf.edu/scopus2010/1362