Title

Engineering A Titanium And Polycaprolactone Construct For A Biocompatible Interface Between The Body And Artificial Limb

Abstract

Intraosseous transcutaneous amputation prostheses may be able to overcome the problems that stem from the nonuniform distribution of pressure seen in the conventional stump-socket prosthetic replacement devices. Transcutaneous devices have had limited success in amputees. By optimizing the attachment of the skin to the prosthetic, intraosseous transcutaneous amputation prostheses may become clinically viable options. This report details studies evaluating the development of a modified titanium construct with a specially machined surface to increase the adherence of tissue as well as scaffold. A computer-aided biology tool was used to fabricate polycaprolactone (PCL) scaffolds with a specific three-dimensional architecture. To extrude the PCL, it was dissolved in acetic acid to produce a 70% PCL liquid. A scaffold with a porosity of >50% was fabricated to have a tensile strength similar to skin. The presence of a specially machined surface greatly increased the adhesion of the PCL scaffold to the titanium constructs. When the 70% PCL was properly neutralized by heating at 55°C and washing in 90% ethanol (EtOH), there was only a decrease (10%) in the viability of cells seeded onto the PCL constructs when compared with the cells in culture. The antibacterial properties of titanium dioxide anatase, silver nanoparticles, and chlorhexidine diacetate mixed in either type I collagen or hyaluronic acid (HA) were assessed. The addition of 1% (w/w) chlorhexidine diacetate in HA resulted in a 71% decrease in bacteria seen in nontreated HA. These results show promise in developing a novel engineered titanium and PCL construct that promotes effective adhesion between the titanium-skin interface. Copyright 2010, Mary Ann Liebert, Inc.

Publication Date

2-1-2010

Publication Title

Tissue Engineering - Part A

Volume

16

Issue

2

Number of Pages

717-724

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

DOI Link

https://doi.org/10.1089/ten.tea.2009.0066

Socpus ID

77049123524 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/77049123524

This document is currently not available here.

Share

COinS