Title

Columbia-Ucf Trecvid2010 Multimedia Event Detection: Combining Multiple Modalities, Contextual Concepts, And Temporal Matching

Abstract

TRECVID Multimedia Event Detection offers an interesting but very challenging task in detecting highlevel complex events (Figure 1) in user-generated videos. In this paper, we will present an overview and comparative analysis of our results, which achieved top performance among all 45 submissions in TRECVID 2010. Our aim is to answer the following questions. What kind of feature is more effective for multimedia event detection? Are features from different feature modalities (e.g., audio and visual) complementary for event detection? Can we benefit from generic concept detection of background scenes, human actions, and audio concepts? Are sequence matching and event-specific object detectors critical? Our findings indicate that spatial-temporal feature is very effective for event detection, and it's also very complementary to other features such as static SIFT and audio features. As a result, our baseline run combining these three features already achieves very impressive results, with a mean minimal normalized cost (MNC) of 0.586. Incorporating the generic concept detectors using a graph diffusion algorithm provides marginal gains (mean MNC 0.579). Sequence matching with Earth Mover's Distance (EMD) further improves the results (mean MNC 0.565). The event-specific detector ("batter"), however, didn't prove useful from our current re-ranking tests. We conclude that it is important to combine strong complementary features from multiple modalities for multimedia event detection, and cross-frame matching is helpful in coping with temporal order variation. Leveraging contextual concept detectors and foreground activities remains a very attractive direction requiring further research.

Publication Date

1-1-2010

Publication Title

2010 TREC Video Retrieval Evaluation Notebook Papers

Number of Pages

-

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

Socpus ID

84905161670 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84905161670

This document is currently not available here.

Share

COinS