Title
Singular Value Decomposition For The Truncated Hilbert Transform: Part Ii
Abstract
Hilbert transform is a very important tool in computed tomography. Image reconstruction from truncated tomographic data can be reduced to the problem of inverting the Hilbert transform (H14φ)(y) := 1/π ∫a4a1 φ(x)/x-y dx = ψ(y) knowing ψ on the interval [a2, a3], where a1 < a2 < a3 < a4. In this paper, we obtain a singular value decomposition for the operator H14. © 2011 IOP Publishing Ltd.
Publication Date
7-1-2011
Publication Title
Inverse Problems
Volume
27
Issue
7
Number of Pages
-
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1088/0266-5611/27/7/075006
Copyright Status
Unknown
Socpus ID
79959731760 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/79959731760
STARS Citation
Katsevich, A., "Singular Value Decomposition For The Truncated Hilbert Transform: Part Ii" (2011). Scopus Export 2010-2014. 2506.
https://stars.library.ucf.edu/scopus2010/2506