Title

Diffusion Of A Chemically Reactive Species Of A Power-Law Fluid Past A Stretching Surface

Keywords

Magnetic field; Modified Schmidt number; Power-law fluid; Reactive species; Sherwood number; Stretching sheet

Abstract

A numerical solution for the steady magnetohydrodynamic (MHD) non-Newtonian power-law fluid flow over a continuously moving surface with species concentration and chemical reaction has been obtained. The viscous flow is driven solely by the linearly stretching sheet, and the reactive species emitted from this sheet undergoes an isothermal and homogeneous one-stage reaction as it diffuses into the surrounding fluid. Using a similarity transformation, the governing non-linear partial differential equations are transformed into coupled nonlinear ordinary differential equations. The governing equations of the mathematical model show that the flow and mass transfer characteristics depend on six parameters, namely, the power-law index, the magnetic parameter, the local Grashof number with respect to species diffusion, the modified Schmidt number, the reaction rate parameter, and the wall concentration parameter. Numerical solutions for these coupled equations are obtained by the KellerBox method, and the solutions obtained are presented through graphs and tables. The numerical results obtained reveal that the magnetic field significantly increases the magnitude of the skin friction, but slightly reduces the mass transfer rate. However, the surface mass transfer strongly depends on the modified Schmidt number and the reaction rate parameter; it increases with increasing values of these parameters. The results obtained reveal many interesting behaviors that warrant further study of the equations related to non-Newtonian fluid phenomena, especially shear-thinning phenomena. Shear thinning reduces the wall shear stress. © 2011 Elsevier Ltd. All rights reserved.

Publication Date

7-1-2011

Publication Title

Computers and Mathematics with Applications

Volume

62

Issue

1

Number of Pages

93-108

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.camwa.2011.04.055

Socpus ID

79959508587 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/79959508587

This document is currently not available here.

Share

COinS