Title
A New Upper Bound For The Independence Number Of Edge Chromatic Critical Graphs
Keywords
critical graphs; edge coloring; independence number
Abstract
In 1968, Vizing conjectured that if G is a Δ-critical graph with n vertices, then α(G)≤n/2, where α(G) is the independence number of G. In this paper, we apply Vizing and Vizing-like adjacency lemmas to this problem and prove that α(G)<(((5Δ-6)n)/(8Δ-6))/(8Δ-6) )<5n/8 if Δ≥6. Copyright © 2010 John Wiley & Sons, Ltd.
Publication Date
1-1-2011
Publication Title
Journal of Graph Theory
Volume
68
Issue
3
Number of Pages
202-212
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1002/jgt.20552
Copyright Status
Unknown
Socpus ID
80053296164 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/80053296164
STARS Citation
Luo, Rong and Zhao, Yue, "A New Upper Bound For The Independence Number Of Edge Chromatic Critical Graphs" (2011). Scopus Export 2010-2014. 3194.
https://stars.library.ucf.edu/scopus2010/3194