Title
Developments In Optical Coherence Microscopy
Keywords
adaptive imaging; Doppler OCT; focal optics al optics; imaging; optical coherence microscopy microscopy; variable foc
Abstract
Optical Coherence Microscopy (OCM) utilizes a high NA microscope objective in the sample arm to achieve an axially and laterally high resolution OCT image. An increase in NA, however, leads to a dramatically decreased depth of focus (DOF), and hence shortens the imaging depth range so that high lateral resolution is maintained only within a small depth region around the focal plane. One solution to increase the depth of imaging while keeping a high lateral resolution is dynamic-focusing. Utilizing the voltage controlled refocus capability of a liquid lens, we have recently presented a solution for invariant high resolution imaging using the liquid lens embedded within a fixed optics hand-held custom microscope designed specifically for optical imaging systems using a broadband light source centered at 800 nm with a 120 nm bandwidth. Subsequently, we have developed a Gabor-Domain Optical Coherence Microscopy (GD-OCM) that utilizes the high speed imaging of spectral domain OCT, the high lateral resolution of OCM, and the ability of real time refocusing of our custom design variable focus objective. Finally, key developments in Phase-Resolved Doppler OCT (PR-DOCT) are key enablers to combine high-resolution structural imaging with functional imaging. In this paper we review achievements in GD-OCM and detail how portions of in-focus cross-sectional images can be extracted and fused to form an invariant lateral resolution image with multiple cross-sectional images acquired corresponding to a discrete refocusing step along depth enabled by the varifocal device. We demonstrate sub-cellular resolution imaging of an African frog tadpole (Xenopus Laevis) taken from a 500 μm × 500 μm cross-section as well as cellular imaging in in vivo skin. Finally, A novel dual-detection full-range Fourier-domain optical coherence tomography system was developed that provides 7 μm axial resolution (in air) at about 90 kHz axial scan rate for mirror-image phase resolved Doppler imaging in an African frog tadpole and an in vivo human finger. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Publication Date
12-1-2010
Publication Title
Proceedings of SPIE - The International Society for Optical Engineering
Volume
7849
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
DOI Link
https://doi.org/10.1117/12.876784
Copyright Status
Unknown
Socpus ID
78650777445 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/78650777445
STARS Citation
Rolland, J. P.; Meemon, P.; Thompson, K. P.; Murali, S.; and Lee, K. S., "Developments In Optical Coherence Microscopy" (2010). Scopus Export 2010-2014. 321.
https://stars.library.ucf.edu/scopus2010/321